Forecasting Air Passenger Traffic Flows in Canada: An Evaluation of Time Series Models and Combination Methods

نویسنده

  • Constantinos Bougas
چکیده

This master’s thesis studies the Canadian air transportation sector, which has experienced significant growth over the past fifteen years. It provides short and medium term forecasts of the number of enplaned/deplaned air passengers in Canada for three geographical subdivisions of the market: domestic, transborder (US) and international flights. It uses various time series forecasting models: harmonic regression, Holt-Winters exponential smoothing, autoregressive-integrated-moving average (ARIMA) and seasonal autoregressive-integrated-moving average (SARIMA) regressions. In addition, it examines whether or not combining forecasts from each single model helps to improve forecasting accuracy. This last part of the study is done by applying two forecasting combination techniques: simple averaging and a variety of variance-covariance methods. Our results indicate that all models provide accurate forecasts, with MAPE and RMSPE scores below 10% on average. All adequately capture the main statistical characteristics of the Canadian air passenger series. Furthermore, combined forecasts from the single models always outperform those obtained from the single worst model. In some instances, they even dominate the forecasts from the single best model. Finally, these results should encourage the Canadian government, air transport authorities, and the airlines operating in Canada to use combination techniques to improve their short and medium term forecasts of passenger flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

An EMD-SARIMA-Based Modeling Approach for Air Traffic Forecasting

The ever-increasing air traffic demand in China has brought huge pressure on the planning and management of, and investment in, air terminals as well as airline companies. In this context, accurate and adequate short-term air traffic forecasting is essential for the operations of those entities. In consideration of such a problem, a hybrid air traffic forecasting model based on empirical mode d...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Model for Forecasting Passenger of Airport

This research forecasts the growth of air traffic in one of int’l airport.. It actually estimates the growth of air traffic with the trend model, and then the growth is forecasted by monthly air traffic and time series data. To estimate the coefficient of the model in general econometric methods use the time series data, it is suggested that the data should be stationary, otherwise false regres...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013